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Abstract—This paper presents a model predictive control of 

electric power systems based on the multiple Gaussian 

process predictors. The Gaussian process model is a 

nonparametric model and the output of the model has 

Gaussian distribution with mean and variance. The 

multistep ahead predictors for the phase angle in transient 

state of the electric power system are formed by training 

multiple Gaussian process models in accordance with the 

direct approach. Based on these predictors, model 

predictive control is accomplished, where the input signal is 

optimized so that the error between the predicted future 

output and the reference signal becomes small taking the 

uncertainty of the predicted future output into account. 

Simulation results for a simplified electric power system are 

shown to illustrate the effectiveness of the proposed model 

predictive control. 

 

Index Terms—model predictive control, electric power 

system, multistep ahead prediction, Gaussian process model, 

direct method 

 

I. INTRODUCTION 

In recent years, model predictive control has been 

widely applied to both process systems and servo systems 

[1]-[5]. In general, the performance of model predictive 

control greatly depends on the accuracy of the model 

used for prediction. The Gaussian process (GP) model is 

one of the attractive models for multistep ahead 

prediction. The GP model is a nonparametric model and 

fits naturally into Bayesian framework [6]-[8].This model 

has recently attracted much attention for system 

identification [9], [10], time series forecasting [11]-[13], 

and predictive control [3], [14], [15]. Since the GP model 

gives us not only the mean value but also the variance of 

the conditionally expected value of the output, it is useful 

for model predictive control considering the uncertainty 

of model. Moreover, the GP model has far fewer 

parameters to describe the nonlinearity than the 

parametric models such as radial basis function model, 

neural network model, and fuzzy model. 

This paper proposes a novel model predictive control 

of electric power systems based on the multiple GP 

predictors. The concept of the multiple GP predictors for 

electric power systems was presented in [16]. In this 

approach, multistep ahead prediction for the phase angle 

in transient state of the electric power system is directly 

                                                           
Manuscript received July 1, 2014; revised November 21, 2014. 

performed by using the multiple trained GP models as 

every step ahead predictor. Since this direct method uses 

not only one-step ahead predictor but also all-step ahead 

predictors, the prediction errors are not accumulated so 

much as the prediction horizon increases. Moreover, 

these multiple predictors give the predictive values of the 

phase angle and uncertainty of the predictive values as 

well. In the stage of control, the input signal which is the 

increment of excitation voltage is optimized so that the 

error between the predicted future output (phase angle) 

and the reference signal becomes small taking the 

uncertainty of the predicted future output into account. 

The information about uncertainty of the predicted future 

output is used as a constraint. This means that the input 

signal which causes large uncertainty of the predicted 

future output is excluded in the optimization. In this 

paper, the genetic algorithm (GA) [17] is applies for this 

constrained optimization problem. 

This paper is organized as follows. In section II, the 

objective electric power system is described. In section 

III, the multiple GP prior models are derived for every 

step ahead predictors, and the direct multistep ahead 

prediction is given using the GP posterior distribution. In 

section VI, model predictive control based on the 

multiple GP predictors is presented using the GA. In 

section V, simulation results are shown to illustrate the 

effectiveness of the proposed model predictive control. 

Finally, conclusions are given in section VI. 

II. ELECTRIC POWER SYSTEMS 

Consider a single machine power system described by  
 

 

{
 
 

 
 �̃��̈�(𝑡) + �̃��̇�(𝑡) + 𝑃𝑒 = 𝑃𝑖𝑛

𝑃𝑒 =
𝑒𝑡𝐸𝑓𝑑

𝑋𝑒
(1 + ∆𝐸𝑓𝑑(𝑡)) sin 𝛿(𝑡)

𝑦(𝑡) = 𝛿(𝑡) + 𝑣(𝑡)

 (1) 

 

where 𝛿(𝑡):  phase angle，𝑦(𝑡): phase angle corrupted 

by the measurement noise 𝑣(𝑡) ,∆𝐸𝑓𝑑(𝑡) : increment of 

excitation voltage, �̃� : inertia coefficient, �̃� : damping 

coefficient, 𝑃𝑒 : generator output power, 𝑃𝑖𝑛 : turbine 

output power, 𝐸𝑓𝑑 : excitation voltage, 𝑒𝑡 : infinite bus 

voltage, and 𝑋𝑒 : system impedance. The measurement 

noise 𝑣(𝑡)  is zero mean white Gaussian noise with 

variance𝜎2.Itis assumed that the input 𝑢(𝑘) = ∆𝐸𝑓𝑑(𝑘𝑇𝑠) 

and the noisy measurement of the output 𝑦(𝑘) =
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𝑦(𝑘𝑇𝑠)at 𝑡 = 𝑘𝑇𝑠are available when the multistep ahead 

predictors are trained, where 𝑇𝑠 is the samplingperiod.  

III. MULTISTEP AHEAD PREDICTION 

There are two approaches to multistep ahead prediction. 

One is the direct method that makes multistep ahead 

prediction directly by using a specific step ahead 

predictor. The other is the iterated method that repeats 

one-step ahead prediction up to the desired step. The 

iterated multistep ahead predictions with propagation of 

the prediction uncertainty based on the GP model were 

presented in [11], [12].Although the computational 

burden of this approach is not so heavy during the 

training phase, unacceptable prediction errors are 

gradually accumulated as the prediction horizon increases 

especially in the presence of measurement noise. 

Therefore, in this paper, the direct approach is considered 

[16]. 

The problem of multistep ahead prediction is usually to 

estimate the future outputs given the past input and output 

data. The optimal predictor can be written as 
 

 �̂�(𝑘 + 𝑗) = E[𝑦(𝑘 + 𝑗)|𝒙(𝑘)] (2) 
 

where E[∙] is the expectation operator, and 
 

 𝒙(𝑘) = [𝑦(𝑘), 𝑦(𝑘 − 1),⋯ , 𝑦(𝑘 − 𝐿𝑦 + 1), 

                   𝑢(𝑘), 𝑢(𝑘 − 1),⋯ , 𝑢(𝑘 − 𝐿𝑢 + 1)]
T  

(3) 

 

is the state vector consisting of the past outputs and 

inputs up to the prespecified lags𝐿𝑦and 𝐿𝑢. Actually, with 

the GP framework, not only estimates �̂�(𝑘 + 𝑗)but also 

its uncertainty,i.e.,thevariance �̂�2(𝑘 + 𝑗) are 

estimated.Therefore, the problem here is to construct the 

following probability distributions for the multistep ahead 

prediction 
 

 𝑦(𝑘 + 𝑗)|𝒙(𝑘)~𝑁(�̂�(𝑘 + 𝑗), �̂�2(𝑘 + 𝑗)) 

                                            (𝑗 = 1,2,⋯ ,𝑀) 
(4) 

 

And to carry out multistep ahead prediction up to 𝑀 

step based on these distributions, by using the GP 

framework. 

A. Derivation of GP Prior Models 

Consider a 𝑗-step ahead predictor as  
 

 𝑦(𝑘 + 𝑗) = 𝑓𝑗(𝒙(𝑘)) + 𝜀𝑗(𝑘) 

                         (𝑗 = 1,2,⋯ ,𝑀) 
(5) 

 

where 𝑓𝑗(∙)is a function which is assumed to be stationary 

and smooth. 𝜀𝑗(𝑘)  is zero mean Gaussian noise with 

unknown variance 𝜎𝑗
2. 

Putting 𝑘 = 𝑘𝑠,  𝑘𝑠 + 1,⋯ ,  𝑘𝑠 +𝑁 − 1 on (5) yields 
 

 𝒚𝑗 = 𝒇𝑗 + 𝜺𝑗 (6) 
 

where 
 

 
𝒚𝑗 = [𝑦(𝑘𝑠 + 𝑗), 𝑦(𝑘𝑠 + 𝑗 + 1),

 

     
 ⋯ , 𝑦(𝑘𝑠 + 𝑗 + 𝑁 − 1)]

T

 

𝒇𝑗 = [𝑓𝑗(𝒙1), 𝑓𝑗(𝒙2),⋯ , 𝑓𝑗(𝒙𝑁)]
T

 

𝜺𝑗 = [𝜀𝑗(𝑘𝑠), 𝜀𝑗(𝑘𝑠 + 1),⋯ , 𝜀𝑗(𝑘𝑠 +𝑁 − 1)]
T
 

(7)
 

𝑿 = [𝒙1, 𝒙2, ⋯ , 𝒙𝑁]
T 

    = [𝒙(𝑘𝑠), 𝒙(𝑘𝑠 + 1),⋯ , 𝒙(𝑘𝑠 + 𝑁 − 1)]
T 

 

𝒚𝑗 and 𝒇𝑗  are the vector of model outputs and the 

vector of function values for the j-step ahead predictor, 

respectively. 𝑿 is the model input matrix and is common 

for every step ahead predictors. {𝑿, 𝒚𝑗}  is the training 

input and output data for thej-step ahead predictor. 

A GP is a Gaussian random function and is completely 

described by its mean function and covariance function. 

We can regard it as a collection of random variables 

which has joint multivariable Gaussian distribution. 

Therefore, the vector of function values 𝒇𝑗  can be 

represented by the GP as 
 

 𝒇𝑗~𝑁(𝒎𝑗(𝑿), 𝜮𝑗(𝑿, 𝑿)) (8) 
 

where 𝒎𝑗(𝑿) is theN-dimensional mean function vector 

and 𝜮𝑗(𝑿, 𝑿)  is theN-dimensional covariance matrix 

evaluated at all pairs of the training input data. Equation 

(8) means that 𝒇𝑗  has a Gaussian distribution with the 

mean function vector 𝒎𝑗(𝑿)  and the covariance matrix 

𝜮𝑗(𝑿,𝑿). 

The mean function is often represented by a 

polynomial regression [8]. In this paper, the mean 

function vector 𝒎𝑗(𝑿)  is expressed by the first order 

polynomial, i.e., a linear combination of the model input: 
 

 𝒎𝑗(𝑿) = [𝑚𝑗(𝒙1),𝑚𝑗(𝒙2),⋯ ,𝑚𝑗(𝒙𝑁)]
T
= �̃�𝜽𝑗 (9) 

 

where �̃� = [𝑿, 𝒆],and 𝒆 = [1,1,⋯ ,1]T is the N-dimensional 

vector consisting of ones, and 𝜽𝑗 = [𝜃𝑗𝑜 , 𝜃𝑗1 ,⋯ , 𝜃𝑗(𝐿𝑦+𝐿𝑢)]
T

 

is the unknown weighting parameter vector of the mean 

function to be trained. 

The covariance matrix 𝜮𝑗(𝑿,𝑿)is constructed as 
 

 
𝜮𝑗(𝑿, 𝑿) = [

𝛴𝑗(1,1) ⋯ 𝛴𝑗(1,𝑁)
⋮ ⋱ ⋮

𝛴𝑗(𝑁,1) ⋯ 𝛴𝑗(𝑁,𝑁)

] (10) 

 

where the element 𝛴𝑗(𝑝,𝑞) = cov(𝑓𝑗(𝒙𝑝), 𝑓𝑗(𝒙𝑞)) =

𝑠𝑗(𝒙𝑝, 𝒙𝑞)  is a function of 𝒙𝑝  and 𝒙𝑞 . Under the 

assumption that the process is stationary and smooth, the 

following Gaussian kernel is utilized for 𝛴𝑗(𝑝,𝑞): 
 

          Σ𝑗(𝑝,𝑞) = 𝑠𝑗(𝒙𝑝, 𝒙𝑞) 

 

                     = 𝜌𝑗
2𝑒xp (−

‖𝒙𝑝 − 𝒙𝑞‖
2

2ℓ𝑗
2 ) 

(11) 

where 𝜌𝑗
2 is the signal variance, ℓ𝑗 is the length scale, and 

∥⋅∥ denotes the Euclidean norm.The free parameters 𝜌𝑗 

and ℓ𝑗 of (11) and the noise standard deviation 𝜎𝑗  are 

called hyperparameters and construct the hyperparameter 

vector 𝒉𝑗 = [𝜌𝑗 , ℓ𝑗 , 𝜎𝑗]
T
. 𝜌𝑗  can control the overall variance 

of the random function 𝑓𝑗(∙) and determines the 

magnitude of the function 𝑓𝑗(∙).  ℓ𝑗 can change the 

characteristic length scale so that the axis about the model 

inputchanges.  

Since 𝒚𝑗  is noisy observation, we have the following 

GP model for j-step ahead prediction from (6) and (8) as 
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 𝒚𝑗~𝑁(𝒎𝑗(𝑿), 𝑲𝑗(𝑿,𝑿)) (12) 
 

where 
 

 𝑲𝑗(𝑿, 𝑿) = 𝜮𝑗(𝑿,𝑿) + 𝜎𝑗
2𝑰𝑁 

 𝑰𝑁:  𝑁 × 𝑁 identity matrix 
(13) 

 

In the following, 𝜮𝑗(𝑿, 𝑿)  and 𝑲𝑗(𝑿, 𝑿)are written as 

𝜮𝑗and 𝑲𝑗, respectively. 

B. Training of GP Prior Models 

 

Figure 1.  The multistep ahead prediction scheme 

To perform multistep ahead prediction, the proposed 

direct approach needs1to 𝑀 step ahead prediction 

modelsas shown in Fig. 1. The accuracy of prediction 

greatly depends on the unknown parameter vector 

𝝑𝑗 = [𝜽𝑗
T, 𝒉𝑗

T]
T

 and therefore 𝝑𝑗 has to be optimized.This 

training is carried out by minimizing the negative log 

marginal likelihood of the training data: 
 

 𝐽(𝝑𝑗) = − log 𝑝(𝒚𝑗|𝑿, 𝝑𝑗) 

   =
1

2
log|𝑲𝑗| +

1

2
(𝒚𝑗 −𝒎𝑗(𝑿))

T
𝑲𝑗
−1 

                  × (𝒚𝑗 −𝒎𝑗(𝑿)) +
𝑁

2
log (2𝜋) 

   =
1

2
log|𝑲𝒋| +

1

2
(𝒚𝑗 − �̃�𝜽𝑗)

T
𝑲𝑗
−1(𝒚𝑗 − �̃�𝜽𝑗) 

                 +
𝑁

2
log(2𝜋) 

 

(14) 

Since the cost function 𝐽(𝝑𝑗)  generally has multiple 

local minima, this training problem becomes a nonlinear 

optimization one. However, we can separate the linear 

optimization part and the nonlinear optimization part for 

this optimization problem. The partial derivative of (14) 

with respect to the weighting parameter vector 𝜽𝑗 of the 

mean function is as follows: 
 

 𝜕𝐽(𝝑𝑗)

𝜕𝜽𝑗
= −�̃�T𝑲𝑗

−1𝒚𝑗 + �̃�
T𝑲𝑗

−1�̃�𝜽𝑗 (15) 

 

Note that if the hyperparameter vector 𝒉𝑗 of the 

covariance function is given, then the weighting 

parameter 𝜽𝑗 can be estimated by the linear least-squares 

method putting 𝜕𝐽(𝝑𝑗) 𝜕𝜽𝑗 = 𝟎⁄ : 
 

 𝜽𝑗 = (�̃�
T𝑲𝑗

−1�̃�)
−1
�̃�T𝑲𝑗

−1𝒚𝑗 (16) 
 

However, even if the weighting parameter vector 𝜽𝑗 is 

known, the optimization with respect to 

hyperparametervector 𝒉𝑗  is a complicated nonlinear 

problem and might suffer from the local minima problem. 

Therefore, the unknown parameter vector 𝝑𝑗  is 

determined by the separable least-squares (LS) 

approachcombining the linear LS method and the GA 

[17], as  

𝝑𝑗[𝑏𝑒𝑠𝑡] = [𝜽𝑗[𝑏𝑒𝑠𝑡]
T , 𝒉𝑗[𝑏𝑒𝑠𝑡]

T ]
T

= [𝜽𝑗[𝑏𝑒𝑠𝑡]
T , 𝜌𝑗[𝑏𝑒𝑠𝑡], ℓ𝑗[𝑏𝑒𝑠𝑡], 𝜎𝑗[𝑏𝑒𝑠𝑡]]

T
. 

C. Multistep ahead Prediction by GP Posterior 

We have already obtained the GP prior models for j ( j 

= 1, 2,…M) step ahead predictors. In the direct approach, 

multistep ahead prediction up to 𝑀  step is carried out 

directly using every GP prior models as shown in Fig. 1. 

For a new given test input 

 
And corresponding test output 𝑦∗(𝑘0 + 𝑗)  (𝑗 =

1,2,⋯ ,𝑀) , we have the followingjointGaussian 

distribution:
 

 

 [
𝒚𝑗

𝑦∗(𝑘0 + 𝑗)
]

 

~𝑁 ([
𝒎𝑗(𝑿)

𝑚𝑗(𝒙∗)
] , [

𝑲𝑗 𝜮𝑗(𝑿, 𝒙∗)

𝜮𝑗(𝒙∗, 𝑿) 𝑠𝑗(𝒙∗, 𝒙∗) + 𝜎𝑗[𝑏𝑒𝑠𝑡]
2 ]) 

(𝑗 = 1,2,⋯ ,𝑀)  

(17) 

 

where 𝑘0  is the starting step for prediction, and 

𝜮𝑗(𝑿, 𝒙∗) = 𝜮𝑗
T(𝒙∗, 𝑿) is the N-dimensional covariance 

vector evaluated at all pairs of the training and test 

data.𝑠𝑗(𝒙∗, 𝒙∗) is the variance of the test data. 𝜮𝑗(𝑿, 𝒙∗) 

and 𝑠𝑗(𝒙∗, 𝒙∗)  are calculated by the trained covariance 

function. 

From the formula for conditioning a joint Gaussian 

distribution [18], the posterior distribution for a specific 

test data is 
 

 𝑦∗(𝑘0 + 𝑗)|𝑿, 𝒚𝑗 , 𝒙∗~𝑁(�̂�∗(𝑘0 + 𝑗), �̂�∗
2(𝑘0 + 𝑗)) 

(𝑗 = 1,2,⋯ ,𝑀)  
(18) 

 

where 
 

 �̂�∗(𝑘0 + 𝑗) = 𝑚𝑗(𝒙∗)
 

                          +𝜮𝑗(𝒙∗, 𝑿)𝑲𝑗
−1(𝒚𝑗 −𝒎𝑗(𝑿))

 
�̂�∗
2(𝑘0 + 𝑗) = 𝑠𝑗(𝒙∗, 𝒙∗) −𝜮𝑗(𝒙∗, 𝑿)𝑲𝑗

−1𝜮𝑗(𝑿, 𝒙∗)

+ 𝜎𝑗[𝑏𝑒𝑠𝑡]
2  

(19) 

 

 

                              

 )   (  )   (    )     (       )]
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Are the predictive mean and the predictive variance at 

the j-step ahead, respectively.  

IV. MODEL PREDICTIVE CONTROL 

In this section, model predictive control is carried out 

using the multiple GP predictors described in the 

previous section. Model predictive control is generally 

based on the receding horizon strategy. At the current 

time step 𝑘0 , the optimal input signal on the control 

horizon [𝑘0, 𝑘0 + 𝑁𝑢 − 1] is determined so that the error 

between the predicted future output and the reference 

signal on the prediction horizon [𝑘0 + 1, 𝑘0 + 𝑁𝑦] becomes 

small. Next, only the first input signal at 𝑘 = 𝑘0  is 

applied to the objective system and the next output at 

𝑘 = 𝑘0 + 1 is measured. Then, the above procedure is 

repeated, putting the time step forward on one step. In 

this paper, the problem of model predictive control: 
 

 
min
𝑢∗(𝑘0)

∑(𝑦𝑟𝑒𝑓(𝑘0 + 𝑗) − �̂�∗(𝑘0 + 𝑗))
2

𝑀

𝑗=1

 (20) 

 

Subject to  
 

 |𝑢∗(𝑘0)| ≤ 𝑈𝑚𝑎𝑥 (21) 
 

 
∑�̂�∗

2(𝑘0 + 𝑗) ≤ 𝑆𝑚𝑎𝑥

𝑀

𝑗=1

 (22) 

 

Which is considered, where 𝑦𝑟𝑒𝑓(𝑘)  is the reference 

signal, 𝑈𝑚𝑎𝑥  is the constraint for the input signal, and 

𝑆𝑚𝑎𝑥  is the constraint for the uncertainty about the 

predicted future output. The constraint condition (22) 

means that the input signal which causes large 

uncertainty of the predicted future output is excluded in 

the optimization. Although the constraint condition (22) 

may not influence the performance of control when the 

prediction model is quite accurate, it would work when 

the uncertainty of the prediction model is large. The 

prediction horizon is taken to be [𝑘0 + 1, 𝑘0 +𝑀], and 

the control horizon is set to be [𝑘0, 𝑘0], namely, only one 

input signal is determined in the proposed method. 

The detailed algorithm of the proposed model 

predictive control using the GA is as follows: 

1) Step 1: Initialization for time step 

Set the current time stepas 𝑘 = 𝑘0. 

2) Step 2: Initialization for GA 

Generate an initial population of𝑄binary strings with 

𝐿 bits for the input signal 𝑢∗(𝑘0) randomly. 

Set the initial generation 𝑔 to 0. 

3) Step3: Decoding 

Decode 𝑄  strings into real values 𝑢∗[𝑖](𝑘0)(𝑖 =

1,2,⋯ , 𝑄) as follows: 
 

 
𝑢∗[𝑖](𝑘0) =

2𝑈𝑚𝑎𝑥
2𝐿 − 1

𝑈[𝑖] − 𝑈𝑚𝑎𝑥 (23) 

 

where 𝑈[𝑖]  is the decimal value converted from the 

corresponding binary representation. This coding way 

limits the search range of 𝑢∗[𝑖](𝑘0) to [−𝑈𝑚𝑎𝑥 , 𝑈𝑚𝑎𝑥] so 

that the constraint condition (21) is satisfied.  

4) Step4: Construction of state vector 

Construct the candidates of the state vector: 

𝒙∗[𝑖] = 𝒙∗[𝑖](𝑘0) = [𝑦∗(𝑘0), 𝑦∗(𝑘0 − 1),⋯ , 𝑦∗(𝑘0 − 𝐿𝑦
+ 1), 𝑢∗[𝑖](𝑘0), 𝑢∗(𝑘0 − 1),⋯ , 𝑢∗(𝑘0 − 𝐿𝑢

+ 1)]
T

 

(𝑖 = 1,2,⋯ , 𝑄). 

5) Step5: Prediction of future output 

Predict the future output on the prediction horizon 
[𝑘0 + 1, 𝑘0 +𝑀] using (19) as follows: 

 

 �̂�∗[𝑖](𝑘0 + 𝑗) = 𝑚𝑗(𝒙∗[𝑖])
 

                          +𝜮𝑗(𝒙∗[𝑖], 𝑿)𝑲𝑗
−1(𝒚𝑗 −𝒎𝑗(𝑿))

 

�̂�∗[𝑖]
2 (𝑘0 + 𝑗) = 𝑠𝑗(𝒙∗[𝑖], 𝒙∗[𝑖])

 

−𝜮𝑗(𝒙∗[𝑖], 𝑿)𝑲𝑗
−1𝜮𝑗(𝑿, 𝒙∗[𝑖]) + 𝜎𝑗[𝑏𝑒𝑠𝑡]

2  

(𝑗 = 1,2,⋯ ,𝑀)
 

(24) 

 

6)
 

Step6: Fitness value
 
calculation

 

Calculate the error between the candidates of predicted 

future output
 
and the reference signal from (25):

 
 

 

𝐽[𝑖] =∑(𝑦𝑟𝑒𝑓(𝑘0 + 𝑗) − �̂�∗[𝑖](𝑘0 + 𝑗) )
2

𝑀

𝑗=1

 
(25)

 

 

And
 

the
 

fitness
 

values
 
𝐹[𝑖] = 𝐷 − 𝐽[𝑖] , where

 
𝐷 is a 

positive constant value.
 

If
 
∑ �̂�∗

2(𝑘0 + 𝑗) > 𝑆𝑚𝑎𝑥
𝑀
𝑗=1 , then let

 
𝐹[𝑖] = 0. Namely, the 

candidates of input signal
 

that do not satisfy the 

constraint condition (22) become lethal genes.
 

7)
 

Step7:
 
Reproduction

 

Reproduce each of individual strings with probability 

of
 
𝐹[𝑖] ∑ 𝐹[𝑙]

𝑄
𝑙=1⁄ . Practically, the linear fitness scaling [17] 

is utilized to avoid undesirable premature convergence.
 

8)
 

Step8:
 
Crossover

 

Select two strings randomly and decide whether or not
 

to cross them over according to the crossover probability
 

𝑃𝑐  .
 
Exchange

 
strings at a crossing position if the 

crossover is required. The crossing position is chosen 

randomly.
 

9)
 

Step9:
 
Mutation

 

Alter a bit (0 or 1) of string
 
according to the mutation

 

probability 𝑃𝑚.
 

10)
 
Step10:

 
Repetition for GA

 

If 𝑔 is less than the prespecified
 
𝑔𝑚𝑎𝑥 , then 𝑔 = 𝑔 +

1 and go to step 3.
 

11)
 
Step11:

 
Determination of

 
optimal input

 
signal

 

Determine the optimal input signal 𝑢∗[𝑏𝑒𝑠𝑡](𝑘0) by 

thestringwith the best fitness value over all the past 

generation.
 

12)
 
Step12:

 
Measurement of next output

 

Measure the next output 𝑦∗(𝑘0 + 1) by applying
 

the 

input 𝑢∗[𝑏𝑒𝑠𝑡](𝑘0)to the objective system (1).
 

13)
 
Step13:

 
Putting the time step

 
forward

 

Let
 
𝑘0 = 𝑘0 + 1

 
and go

 
to step 2.

 

V.
 

SIMULATIONS
 

Consider a simplified electric power system
 

[19] 

described by
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Figure 2.  Prediction result for 1 step ahead prediction (σ = 0.004). 

 

Figure 3.  Prediction result for 5 step ahead prediction (σ = 0.004). 

 

Figure 4.  Prediction result for 10 step ahead prediction (σ = 0.004). 

 

{
 
 

 
 �̃��̈�(𝑡) + �̃��̇�(𝑡) + 𝑃𝑒 = 𝑃𝑖𝑛

𝑃𝑒 =
𝑒𝑡𝐸𝑓𝑑

𝑋𝑒
(1 + ∆𝐸𝑓𝑑(𝑡)) sin 𝛿(𝑡)

𝑦(𝑡) = 𝛿(𝑡) + 𝑣(𝑡)

 (26) 

where�̃� = 0.06, �̃� = 0.06,𝐸𝑓𝑑 = 1.0, 𝑒𝑡 = 1.0, 𝑋𝑒 = 1.0,  and 

𝑃𝑖𝑛 = 0.8.These are all per unit values.The training data 

are sampled with sampling period 𝑇𝑠 = 0.01 as 𝑢(𝑘) =

∆𝐸𝑓𝑑(𝑘𝑇𝑠) and 𝑦(𝑘) = 𝑦(𝑘𝑇𝑠)at 𝑡 = 𝑘𝑇𝑠.  The measurement 

noise𝑣(𝑡) is set to be 0 (a noise free case), and zero mean 

Gaussian noise with standard deviation 𝜎 = 0.004 (a case 

of noise to signal ratio: 1%).The lags for the state vector 

(3) are chosen as 𝐿𝑦 = 2 and 𝐿𝑢 = 1 in the noise free case, 

and 𝐿𝑦 = 10  and 𝐿𝑢 = 1 in the case of 𝜎 = 0.004, 

respectively. The number of the training input and output 

data is taken to be 𝑁 = 300  for training each 𝑗  (𝑗 =

1,2,⋯ ,10) step ahead predictor. 

For the case of 𝜎 = 0.004, to validate the results of 

training the predictors, the prediction results for 1, 5 and 

10 step ahead predictors are shown in Fig. 2-Fig. 4. In 

these figures, the circles with lines show the predictive 

mean �̂�∗(𝑘 + 𝑗), the crosses show the measurements (test 

output) 𝑦∗(𝑘 + 𝑗), and the shaded areas give the double 

standard deviation confidence interval (95.5% confidence 

region). From these figures, we can confirm that the error 

between the test data and the predictive mean is quite 

small for every step ahead predictors and it does not 

become so large as the prediction horizon increases.  

Next, model predictive control is carried out using the 

trained multiple GP predictors. The constraints for the 

cost function are taken to be U max = 2.5 and S max = 0.001, 

respectively. The design parameters for the GA are as 

follows: 

Population size: 𝑄 = 30 

String length: 𝐿 = 10 

Crossover probability: 𝑃𝑐 = 0.8 

Mutation probability: 𝑃𝑚 = 0.03 

Maximum generation number: 𝑔𝑚𝑎𝑥 = 10 

The reference signal 𝑦𝑟𝑒𝑓(𝑘)  is changed stepwise as 

follows: 
 

 

𝑦𝑟𝑒𝑓(𝑘) = {

0.7         (0 ≤ 𝑘 < 150)

1.0     (150 ≤ 𝑘 < 300)
 0.8     (300 ≤ 𝑘 ≤ 500)

 (27) 

 

 
(a) Output 𝒚∗(𝒌) 

 
(b)   Input  𝒖∗(𝒌) 

Figure 5.  Time responses in the case of noise free. 

Fig. 5 shows the time responses of output 𝑦∗(𝑘)and the 

input signal 𝑢∗(𝑘) in the case of noise free. Fig. 6 shows 

the time responses of output 𝑦∗(𝑘)  and the inputsignal 

𝑢∗(𝑘)  in the case of the noise standard deviation 𝜎 =
0.004. It can be seen that the output 𝑦∗(𝑘) can track to 

the reference signal 𝑦𝑟𝑒𝑓(𝑘) well in both noise free and 

noisy cases. These results indicate that the proposed 
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model predictive control could be successfully applied to 

the electric power systems. 

 
(a) Output 𝒚∗(𝒌) 

 
(b)   Input 𝒖∗(𝒌) 

Figure 6.  Time responses in the case of σ = 0.004. 

VI. CONCLUSIONS 

In this paper, a novel model predictive control of 

electric power systems based on the multiple Gaussian 

process predictors has been presented. Using the trained 

multiple GP predictors for multistep ahead prediction, the 

optimal input signal is determined so that the constrained 

cost function is minimized in the framework of  the 

receding horizon strategy. Through the numerical 

simulations for the simplified electric power system, it 

has been experimentally demonstrated that the good 

control performance is obtained by the proposed model 

predictive control scheme. The analysis of stability 

condition for this control scheme is one of the future 

works. 
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